

Grundlegendes Anforderungsniveau

Hinweise:

- erste Spalte = verpflichtende Inhalte
- vierte Spalte = optionale Inhalte, Anregungen, Materialverfügbarkeit
- DIE REIHENFOLGE DER "BLÖCKE" ENZYMATIK UND STOFFWECHSEL (ZELLATMUNG) KANN INDIVIDUELL GEWÄHLT WERDEN!!
- Hinweise: Themen Genetik und Muskelaufbau im gAN nicht vorgesehen, in Verknüpfung mit dem Thema ATP-Verbrauch Thema Muskelaufbau ggf. sinnvoll
- DIE JÄHRLICH SPEZIFISCHEN FACHBEZOGENEN INHALTE ZUR ABITURPRÜFUNG SIND ZU BEACHTEN (INHALTLICHE ASPEKTE, AUSWAHL AN DEMONSTRATIONS- UND SCHÜLER"EXPERIMENTEN")

Stoffwechsel, Zellatmung und Enzymatik					
Unterrichtseinheit mit Unterthemen	Inhaltsbezogene Kompetenzen	Prozessbezogene Kompetenzen			
Glucose – ein Energielieferant: Wiederh	Glucose – ein Energielieferant: Wiederholung Biomembranen und Stofftransport				
Wiederaufgriff der Grundzüge der	FW 2.1: SuS erläutern biologische	EG 4.1: SuS wenden den			
Verdauung	Phänomene mithilfe	naturwissenschaftlichen Gang			
z.B. Wie gelangt die energiereiche	verschiedener Arten von	der Erkenntnisgewinnung auf			
Glucose aus dem Darm in die Zellen?	Stofftransport zwischen	neue Probleme an.			
	Kompartimenten (passiver und				
Wdhl: Aufbau Biomembranen	aktiver Transport).				
Wdhl. Stofftransport durch					
Membranen					
- Diffusion					
- Osmose					
- weitere Formen des Stofftransports					
Zellatmung					
Aufbau Mitochondrien	FW 1.2: SuS erläutern Struktur-	EG 1.3: SuS vergleichen den Bau von			
- EM-Bild vom Mitochondrium	Funktionsbeziehungen auf der	Organellen anhand			
- Bezeichnungen der Strukturen in	Ebene von Organellen	schematischer Darstellungen			
Skizze (Chloroplasten, Mitochono		(Chloroplasten, Mitochondrien).			

Jahrgang 12, Semester I: Stoffwechselphysiologie

- Kompartimentierung: durch	FW 2.3: SuS beschreiben, dass	EG 1.1: SuS beschreiben und	
Membranen abgegrenzte	Kompartimentierung auf	erklären biologische Sachverhalte	
Reaktionsräume, die gleichzeitiges	verschiedenen Systemebenen	kriteriengeleitet durch	
Stattfinden unterschiedlicher	existiert (Organell, Zelle, Organ,	Beobachtung und Vergleich.	
Stoffwechselprozesse in derselben	Organismus, Ökosystem).		
Zelle ermöglichen (KC, S. 31)			
Zellatmung – Teilprozesse und Orte	FW 2.1: SuS erläutern biologische	KK 4: SuS unterscheiden bei der	
	Phänomene mithilfe	Erläuterung physiologischer	
- Wortgleichung der Zellatmung	verschiedener Arten von	Sachverhalte zwischen Stoff- und	
- Glykolyse	Stofftransport zwischen	Teilchenebene.	
- Autoradiogramme	Kompartimenten (passiver und	EG 3.1: SuS erläutern biologische	
- Oxidative Decarboxylierung	aktiver Transport).	Sachverhalte mithilfe von	
- Citratzyklus	FW 2.2: SuS erläutern die Funktion	Modellen.	
- Atmungskette	der Kompartimentierung	EG 3.2: SuS wenden Modelle an,	
- chemiosmotisches Modell der	(Ruhepotenzial,	erweitern sie und beurteilen die	
ATP-Bildung	chemiosmotisches Modell der	Aussagekraft und Gültigkeit.	
	ATP- Bildung).	EG 4.2: erläutern biologische	
 Darstellung als C-Körper-Schema; 	FW 2.3: SuS beschreiben, dass	Arbeitstechniken	
schematische Darstellung auf	Kompartimentierung auf	(Autoradiografie, DNA-	
molekularer Ebene; Verzicht auf	verschiedenen Systemebenen	Sequenzierung unter Anwendung	
chemische Strukturformeln (KC, S.	existiert (Organell, Zelle, Organ,	von PCR und Gel-Elektrophorese,	
30)	Organismus, Ökosystem).	DNA-Chip-Technologie*), werten	
- Anzahl an C-Atomen, Namen der	FW 4.1: SuS erläutern	Befunde aus und deuten sie.	
Ausgangsstoffe und Produkte	Grundprinzipien von	EG 4.4: SuS beschreiben, analysieren	
sowie der an den energetisch	Stoffwechselwegen	und deuten Abbildungen,	
relevanten Schritten beteiligten	(Redoxreaktionen,	Tabellen, Diagramme sowie	
Zwischenprodukte, Reduktions-	Energieumwandlung,	grafische Darstellungen unter	
und Energieäquivalente (KC, S. 30;	Energieentwertung, ATP/ADP-	Beachtung der untersuchten	
33)	System, Reduktionsäquivalente).	Größen und Einheiten.	
- Bedeutung der	FW 4.5: SuS erläutern die		
Kompartimentierung für Aufbau	Bereitstellung von Energie unter		
des Protonengradienten	Bezug auf die vier Teilschritte der		
	Zellatmung (C-Körper-Schema,		

Jahrgang 12, Semester I: Stoffwechselphysiologie

- Prinzip der energetisches Modell der ATP-	
Oberflächenvergrößerung Bildung *, chemiosmotisches	
- Bedeutung des Sauerstoffs Modell der ATP-Bildung, Stoff-	
(Rückbezug auf Wort-(Reaktions-) und Energie-Bilanzen).	
gleichung	
Bilanzierung	
- Stoff- und Energiebilanzen unter	
Berücksichtigung der	
Einzelprozesse	
- Energieverlust/Wärmeabgabe	
("Energieentwertung")	
Enzymatik	
- Aufbau von Enzymen FW 3.1: SuS beschreiben EG 2.1: SuS entwickeln	
- Funktionsweise kompetitive und allosterische Fragestellungen und Hypot	thesen,
(Aktivierungsenergie) Wirkungen bei Enzymen zur planen Experimente, führe	n
- Substratspezifität Regulation von diese durch und werten sie	1
- Schlüssel-Schloss-Prinzip → Enzym- Stoffwechselwegen hypothesenbezogen aus.	
Substrat-Komplex (Phosphofructokinase). EG 2.2: SuS diskutieren	
- Wirkungsspezifität FW 4.3: SuS erläutern Enzyme als Fehlerquellen bei Experime	enten
- Enzymaktivität in Abhängigkeit von: Biokatalysatoren von Abbau- und (fehlender Kontrollansatz).	
 Substratkonzentration Aufbauprozessen 	
Temperatur (RGT-Regel) (Aktivierungsenergie, Substrat-	
o pH (Denaturierung) und Wirkungsspezifität).	
- Optimumkurven FW 4.4: SuS erläutern die	
- Kompetitive Hemmung Abhängigkeit der Enzymaktivität	
- Allosterische Hemmung anhand der von unterschiedlichen Faktoren	
Phosphofructokinase (Temperatur, pH-Wert,	
Substratkonzentration).	
FW 1.1: SuS erläutern Struktur-	
Funktionsbeziehungen auf der	
Ebene von Molekülen modellhaft	
(Enzyme, Rezeptormoleküle,	
Aktin- und Myosinfilamente bei	

Sc	hu	lint	erner	Arbeits	olan	Biol	logie

Jahrgang 12, Semester I: Stoffwechselphysiologie

r	
L	₩,
•	

der Kontraktion von Skelettmuskelfasern*).	